
Summary & Impressions
Carly Lebeuf - Matthieu Foucault

Foundations of Software Engineering (FSE) Schedule
● Keynote Presentations (3)

○ Margaret Burnett - “Womenomics” and Gender Inclusive Software: What SE Need to Know
○ James Herbsleb - Building a Socio-Technical Theory of Coordination: Why and How
○ Daniel Jackson & Mandana Vaziri - Correct or Usable? The Limits of Traditional Verification

● Visions Presentations (2)
● Panel: The State of Software Engineering Research

○ Lionel Briand, Prem Devanbu, Peri Tarr, Laurie Williams, Tao Xie, Margaret-Anne Storey (mod.)

● Showcase of Software Engineering Best Practices
● Breakout Sessions (20)
● Collocated Workshops (8)

Proceedings can be found: http://dl.acm.org/citation.cfm?id=2950290&preflayout=flat

http://dl.acm.org/citation.cfm?id=2950290&preflayout=flat

FSE Sessions
● Specification
● HCI and Process
● Bug Detection and Debugging
● Security and Privacy
● Adaptation and Change
● API Mining and Usage
● Verification
● Requirements and Models
● Android
● Static Analysis

● Recommendation
● Test Coverage
● Program Analysis
● Build and Configuration
● Code Search and Similarity
● Program Repair
● Development Environments
● Concurrency
● Open-Source
● Test Generation

Social Software Engineering (SSE) Workshop
Should We Take a Human-Centric View of Software Engineering by Adopting a
Socio-Technical Perspective?

- Jim Herbsleb, Carnegie Mellon University, USA

Lessons in Social Coding: Software Analytics in the Age of GitHub.
- Bogdan Vasilescu, Carnegie Mellon University, USA

The Rise and Fall of Developer Online Communities.
- Chris Parnin, NC State University, USA

Should We Take a Human-Centric View of Software
Engineering by Adopting a Socio-Technical Perspective?
Jim Herbsleb (http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf)

● What Are the Building Materials for Software?
○ Church-Turing Thesis (Jim’s paraphrase): Any Turing-complete machine can compute

anything that is computable.

○ Implies that code running on any computer can (theoretically) fulfill any (computable)
functional requirements.

● What Is the Problem?
○ Within the space of what is computable, limitations come from our own limited capacities
○ What can we understand?
○ What languages, abstractions, algorithms, and data structures can we dream up?
○ What are our limitations and how can we compensate for them?
○ How can we act together in a coordinated way?

SSE

http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf

Should We Take a Human-Centric View of SE...
Jim Herbsleb (http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf)

Two Frameworks and an Example
● Transactive Memory Systems

○ Knowledge of “who knows what”
○ Develops through experience and collaboration
○ Facilitates adaptation to new situations or tasks

● Gatekeeper networks
○ Small number of people become information hubs
○ Connected to information sources inside and outside organization
○ People go to them with questions

● GitHub: Why so successful?
○ Provides means for humans to form and use social capabilities
○ Transactive Memory Systems: activity traces, profiles, consistent across repositories
○ Gatekeeper networks: Watching, starring, following, curating, “asynchronous mentoring”

http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf

Takeaways...
● Psychology, sociology, etc. are a starting point to understand developers

coordination
● Only moderately useful in current form

○ Stretched by complexity of environment, rapid change, capabilities of digital tools and
materials

● We need a socio-technical perspective!

Should We Take a Human-Centric View of SE...
Jim Herbsleb (http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf)

http://sse-ws.github.io/FSE-Soc-Soft-2016-v6-dist.pdf

Lessons in Social Coding: Software Analytics in the Age of GitHub.
Bogdan Vasilescu

● Today’s open-source development is happening in large, socially enabled
ecosystems

● As practice is evolving, research should look at this new practice
● Two examples

○ Pull request evaluation time
○ Developer multitasking

SSE

Example 1: Pull Request Evaluation Time
Bogdan Vasilescu

SSE

Example 1: Pull Request Evaluation Time
Bogdan Vasilescu

SSE

Example 2: Multitasking and Performance
Bogdan Vasilescu

SSE

Example 2: Multitasking and Performance
Bogdan Vasilescu

SSE

The Rise and Fall of Developer Online Communities
Chris Parnin (http://sse-ws.github.io/SSE-Parnin.pdf)

Traditional Documentation:
● Project (wrote by few, read by few) & API (wrote by few, read by many)

When developers are learning about API documentation (Microsoft Survey) they:
● Google (73.5%), IntelliSense (42.5%), Official Documentation (40.1%)

Study on JQuery API (2011)
● 1730 search results...

SSE

The Rise and Fall of Developer Online Communities
Chris Parnin (http://sse-ws.github.io/SSE-Parnin.pdf)

Crowd Documentation
● “Knowledge is created and curated by a mostly uncoordinated collective”
● An example of Peer Production

Is “Crowd Documentation” used?
● 1,316 days of developer browser history
● Consistent with the self-reported surveys

SSE

The Rise and Fall of Developer Online Communities
Chris Parnin (http://sse-ws.github.io/SSE-Parnin.pdf)

What makes Stack Overflow different?
● Traceability links, quick response times, high coverage (88% of Android API),

correlated with usage, more examples, experts

The downfall of Stack Overflow…
● Takes a long time to get coverage (3 years to get 50% coverage on GWT)
● Limited topics covered (ex. accessibility)
● Gamification mechanisms: 60% of questions answered by 5% of users
● Participation: 21% of users are female, but only 5-7% contribute
● Barriers: fear, saturation, microaggressions,

Automated Community Repair:
● Repair bots (fix docs / warn), Community bots (monitor / pair up devs) SSE

Paradise Unplugged: Identifying Barriers for Female
Participation on Stack Overflow
D. Ford, J. Smith, P. Guo, C. Parnin (doi.org/10.1145/2950290.2950331)

Conducted 22 interviews with female developers & a follow-up survey (134 F,
1336 M) to determine barriers that existed for contributing on Stack Overflow.

The following categories (3) of barriers (14) were found:
● “Muddy Lens Perspective” - unclear perception of how Stack Overflow works
● “Impersonal Interactions” - lack of connections / uncomfortable atmosphere
● “On-Ramp Roadblocks” - obstacles that undermined interest in posting

Some barriers (5) were found to be significantly more problematic for females.

Open Source

https://doi.org/10.1145/2950290.2950331

Paradise Unplugged: Identifying Barriers for Female
Participation on Stack Overflow
D. Ford, J. Smith, P. Guo, C. Parnin (doi.org/10.1145/2950290.2950331)

Open Source

https://doi.org/10.1145/2950290.2950331

“Womenomics” and Gender-Inclusive Software: What
Software Engineers Need to Know
Margaret Burnett (1:30-2:30 pm, January 6th, ECS 660)

User’s experiences with software from a gender perspective...

Introduced the GenderMag Method...
● Helps software developers / usability experts identify features that are not

gender-inclusive
● 5-facets of gender differences: motivations for use, information processing

style, computer self-efficacy, attitude towards risk, willingness to explore / tinker
● 4 Personas representing “archetypes” of user

○ A set of male / female personas to bring to life the 5-facets of gender differences

● Cognitive Walkthrough that explicitly uses the 5-facets of gender differences
and the personas

Keynote

Presentation at ICGSE: https://youtu.be/BsgnLwPMqWM

What is a bot?
● A bot is an application that performs automated, repetitive, pre-defined tasks
● Conduit between users and services, typically through a conversational UI
● “The operating system of the future isn’t Windows, but conversation as a

platform” - Microsoft

The five proposed dimensions of bots…
● What do they do…
● How intelligent…
● How autonomous…

Disrupting Developer Productivity One Bot at a Time
Margaret-Anne Storey & Alexey Zagalsky (doi.org/10.1145/2950290.2983989)

Visions

● How to interact with them…
● How they are created…

https://youtu.be/BsgnLwPMqWM
https://doi.org/10.1145/2950290.2983989

Bots in Software Development…
● Entertainment bots
● Code bots
● Test bots
● DevOps bots
● Support bots
● Documentation bots

Disrupting Developer Productivity One Bot at a Time
Margaret-Anne Storey & Alexey Zagalsky (doi.org/10.1145/2950290.2983989)

Visions

Productivity framework for bots…
● Efficiency: “do things faster”

○ Automate repetitive tasks
○ Help developers stay in the flow

● Effectiveness: “work towards goals”
○ Decision making
○ Team cognition, self / team regulation

What risks do we need to consider when using bots?
● Will bots change how humans relate to one another?
● What ethical framework should be used for bots?
● When don’t bot interactions work?

https://doi.org/10.1145/2950290.2983989

Designing for Dystopia: Software Engineering Research for the
Post-Apocalypse
T. Barik, R. Pandita, J. Middleton, E. Murphy-Hill (doi.org/10.1145/2950290.2983986)

Software Engineers are generally optimistic, but this bias bolsters unrealistic
expectations towards desirable outcomes

Explicitly framing software engineering research with dystopias may…
● mitigate optimism bias
● encourage more diverse, thought-provoking research directions

Explores the application of 3 dystopias in Software Engineering:
● Battlestar Galactica: skeptic of technology, since it may be hackable
● Fallout 3: limited resources, new programs / patches are risky / costly
● Children of Men: support existing software, rather than building new software

Visions

https://doi.org/10.1145/2950290.2983986

Factors Influencing Code Review Process in Industry
T. Baum, O. Liskin, K. Niklas, K. Schneider (doi.org/10.1145/2950290.2950323)
● Investigate the adoption or non-adoption of code reviews
● Interviews of developers from 19 companies

HCI & Process

Why we refactor? Confessions of GitHub contributors
D. Silva, N. Tsantalis, M.T. Valente (doi.org/10.1145/2950290.2950305)

● Mainly driven by changes in requirements, not so much code smells
resolution

● Motivations for Extract Method: reusability, introduction of alternative
signature, improve readability, facilitate extension

● Main motivation for Move Class/Attribute/Method: conceptual relevance
● Refactorings remain manual half of the time

○ Inheritance-related refactoring tools are the less used (10% done automatically)
○ Renaming-related refactorings are the most trusted (over 50% done automatically)

● The IDE matters: IntelliJ users perform more refactorings than Eclipse users

Open Source

http://dl.acm.org/author_page.cfm?id=88158677057&CFID=680412689&CFTOKEN=80064113
http://dl.acm.org/author_page.cfm?id=81100156989&CFID=680412689&CFTOKEN=80064113
http://dl.acm.org/author_page.cfm?id=81452608597&CFID=680412689&CFTOKEN=80064113
https://doi.org/10.1145/2950290.2950305
http://dl.acm.org/author_page.cfm?id=88158677057&CFID=680412689&CFTOKEN=80064113

When should internal interfaces be promoted to public?
A. Hora, M. Valente, R. Robbes, N. Anquetil (doi.org/10.1145/2950290.2950306)

Software systems often have public (stable) APIs & internal (unstable) APIs
● Clients often use internal interfaces, causing failures when the APIs evolve
● API producers may promote internal interfaces to public
● There is currently no way of detecting internal interface promotion candidates

Conducted an empirical investigation on 5 Java systems:
● Promoted interfaces are domestically used by more packages, classes,

commits and developers, and that they tend to attract newer clients over time
● Applied predictor to automatically detected 382 public interface candidates
● Public interface candidates interfaces were more likely to external clients

API Mining

https://doi.org/10.1145/2950290.2950306

How to break an API: cost negotiation and community values
in three software ecosystems
C. Bogart, C. Kästner, J. Herbsleb, F.Thung (doi.org/10.1145/2950290.2950325)

● In Eclipse, you don’t
● In R, you reach to downstream developers
● In NPM, you use semantic versioning

HCI & Process

http://dl.acm.org/author_page.cfm?id=81435601576&CFID=680412689&CFTOKEN=80064113
http://dl.acm.org/author_page.cfm?id=81331495728&CFID=680412689&CFTOKEN=80064113
http://dl.acm.org/author_page.cfm?id=81100340340&CFID=680412689&CFTOKEN=80064113
http://dl.acm.org/author_page.cfm?id=81548005192&CFID=680412689&CFTOKEN=80064113
https://doi.org/10.1145/2950290.2950325
http://dl.acm.org/author_page.cfm?id=81435601576&CFID=680412689&CFTOKEN=80064113

FSE Panel
Panelists: Lionel Briand, Prem Devanbu, Peri Tarr, Laurie Williams, Tao Xie
Moderator: Margaret-Anne Storey

Three questions were posed to the panel:
1. Do you believe our community as a whole is achieving the right balance of science,

engineering, and design in our combined research efforts?
2. What new or existing areas of research do you think our community should pay

more attention to?
3. Do you have novel suggestions for how we could improve our research methods to

increase the impact of software engineering research in the near and distant future?

Recording: https://youtu.be/sE_jX92jJr8
Blog Post: margaretstorey.com/blog/2016/12/01/fse2016panel/

https://youtu.be/sE_jX92jJr8
http://margaretstorey.com/blog/2016/12/01/fse2016panel/

FSE / ESEC 2017 will be held in Paderborn, Germany
Call for papers deadline: February 27th, 2017

2016 Proceedings: http://dl.acm.org/citation.cfm?id=2950290&preflayout=flat

http://dl.acm.org/citation.cfm?id=2950290&preflayout=flat

